A parabola is represented by the equation y = x2 + 6x − 17. The x-intercepts of the parabola are____ and_____ . The y-intercept of the parabola is______ . (If necessary, round your answers to the nearest hundredth.)

Respuesta :

Answer:

2.8, 8.8, and -17 respectively.

Step-by-step explanation:

We need to find roots of the equation.

Answer:

x-intercepts : [tex](-3+\sqrt{26} ,0),(-3-\sqrt{26} ,0)[/tex] ≈ [tex](2.09,0), (-8.09,0)[/tex]

y- intercepts : [tex](0,-17)[/tex]

Step-by-step explanation:

To find the x-intercept(s), substitute in  0 for y and solve for x.

thus

                         [tex]x^{2} + 6x-17=0[/tex]

Using quadratic formula for finding value of x.

                            [tex]x=\frac{-b}{2a}[/tex] ± [tex]\frac{\sqrt{b^{2}-4ac} }{2a}[/tex]

thus we get,

   x-intercepts :  [tex](-3+\sqrt{26} ,0),(-3-\sqrt{26} ,0)[/tex] ≈ [tex](2.09,0), (-8.09,0)[/tex]

Now for y-intercept(s), substitute in 0 for x and solve for y.

thus

                            [tex]y = x^{2} + 6x-17[/tex]

                           [tex]y = (0)^{2} + 6(0)-17[/tex]

                            [tex]y =-17[/tex]

we get,

                  y- intercepts : [tex](0,-17)[/tex]