Use the figure below to determine the length of sides b and c. options: b = 5√3, c = 10 b =10, c = 5√3 b = 5√2, c = 10√3 b = 5, c = 10√2

Please help

Use the figure below to determine the length of sides b and c options b 53 c 10 b 10 c 53 b 52 c 103 b 5 c 102Please help class=

Respuesta :

Answer:

A

Step-by-step explanation:

Using the tangent and sine ratios in the right triangle and

tan30° = [tex]\frac{1}{\sqrt{3} }[/tex], sin30° = [tex]\frac{1}{2}[/tex]

tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{5}{b}[/tex]

Multiply both sides by b

b × tan30° = 5, that is

b × [tex]\frac{1}{\sqrt{3} }[/tex] = 5

Multiply both sides by [tex]\sqrt{3}[/tex]

b = 5[tex]\sqrt{3}[/tex]

and

sin30° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{5}{c}[/tex]

Multiply both sides by c

c × sin30° = 5, that is

c × [tex]\frac{1}{2}[/tex] = 5 ( multiply both sides by 2 )

c = 10

     Option (1) will be the correct option.

Find the sine of the angle measuring 30°,

[tex]\text{sin}(30^\circ)=\frac{\text{Opposite side}}{\text{Hypotenuse}}=\frac{5}{c}[/tex]

[tex]\frac{1}{2}=\frac{5}{c}[/tex]

[tex]c=10[/tex]

Similarly, find cosine of the given angle,

cos(30°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}=\frac{b}{c}[/tex]

[tex]\frac{\sqrt{3} }{2}=\frac{b}{10}[/tex]

[tex]b=\frac{10\sqrt{3} }{2}[/tex]

[tex]b=5\sqrt{3}[/tex]  

   Therefore, Option (1) will be the correct option.

Learn more,

https://brainly.com/question/22973501