Respuesta :

Answer:

The correct option is C). (9,4)

The coordinates of a point N is (9,4)

Step-by-step explanation:

Theory: If point P(x,y) lies on line segment AB and AP: PB=m:n, then we say P divides line AB internally in ratio of m:n and Point is given by

P=[tex](\frac{mX2+nX1}{m+n} , \frac{mY2+nY1}{m+n})[/tex]

Given that point, M is lying somewhere between point L and point N.

The coordinates of a point L is (-6,14)

The coordinates of a point M is (-3,12)

Also, LM: MN = 1:4

We can write as,

Let,

Point L(-6,14)=(X1, Y1)

Point M(-3,12)=(x,y)

Point N is (X2, Y2)

m=1 and n=4

M(-3,12)=[tex](\frac{mX2+nX1}{m+n} , \frac{mY2+nY1}{m+n})[/tex]

M(-3,12)=[tex](\frac{1(X2)+4(-6)}{1+4} , \frac{(Y2)+4(14)}{1+4})[/tex]

M(-3,12)=[tex](\frac{(X2)-24}{5} , \frac{1(Y2)+56}{5})[/tex]

[tex](-3)=\frac{(X2)-24}{5} [/tex]

(-15)=X2-24

X2=9

[tex](12)=\frac{(Y2)+56}{5} [/tex]

(60)=Y2+56

Y2=4

Thus,

The coordinates of a point N is (9,4)

Result: The correct option is C). (9,4)