Respuesta :

Answer:

[tex]y+1=\frac{4}{3} \,(x-9)\\[/tex]

Step-by-step explanation:

The point-slope form of a line uses explicitly the coordinates [tex](x_1,y_1)[/tex]of a point it goes through, and the slope "m" the line has, in the form:

[tex]y-y_1=m\,(x-x_1)[/tex]

So, in this case, they give you the point (9,-1) which means that [tex]x_1=9[/tex], and [tex]y_1=-1[/tex], while the slope [tex]m=\frac{4}{3}[/tex]

Therefore, making use of the general form given above, we replace the general form parameters with the given values:

[tex]y-y_1=m\,(x-x_1)\\y-(-1)=\frac{4}{3} \,(x-9)\\y+1=\frac{4}{3} \,(x-9)[/tex]