Respuesta :

Answer:

The point which is in the solution set of [tex]y<x^2-2x-8[/tex] is (-2,-1)

Step-by-step explanation:

Given inequality is [tex]y<x^2-2x-8[/tex]  

To find the point that lies in the solution set of [tex]y<x^2-2x-8[/tex]:

Given points (4,0), (-2,-1), (0,-2)

Now verify that point (4,0)  

Whether lies in the solution set or not

Let (x,y) be the point (4,0)

ie, put x=4 and y=0 in the solution set

[tex]y<x^2-2x-8[/tex]

[tex]0<(4)^2-2(4)-8[/tex]

[tex]0<16-8-8[/tex]

[tex]0<0[/tex] which is not applicable  

now we verify with the point (-2,-1) put x=-2 and y=-1 values in the solution set

[tex]y<x^2-2x-8[/tex]

[tex](-1)<(-2)^2-2(-2)-8[/tex]

[tex]-1<4+4-8[/tex]

[tex]-1<0[/tex] it is applicable line [tex]0>-1[/tex]

Now  verify with (0,-2)

[tex]y<x^2-2x-8[/tex]

[tex]-2<0^2-2(0)-8[/tex]

[tex]-2<-8[/tex] which is not applicable  

so the point (-2,-1) only satisfies the inequality.

Therefore the point(-2,-1) lies in the solution set [tex]y<x^2-2x-8[/tex]