Determine whether the function below is an even function, an odd function, both, or neither.
f(x) = (x + 5)2
A. both even and odd
B. odd function
C. neither even nor odd
D. even function

Respuesta :

A because like duhhhhhhhhh

Answer:

neither even nor odd

Step-by-step explanation:

f(x)= [tex](x+5)^{2}[/tex]=[tex]x^{2} +10x+25[/tex]

A function is an even function if f(-x) = f(x).

A function is an odd function if f(-x) = -f(x).

f(-x) = [tex](-x+5)^{2}[/tex] = [tex]x^{2} -10x+25[/tex]

-f(x) = [tex]-x^{2} -10x-25[/tex]

Clearly we can see that

f(-x) ≠ f(x)

f(-x) ≠ -f(x)

Hence the function is neither even nor odd.