Answer:
442.75862 nm
Explanation:
m = Order
n = Refractive index
[tex]\lambda[/tex] = Wavelength
We have the relation of thickness and wavelength given by
[tex]2nt=m\lambda[/tex]
The consecutive spectral line is given by
[tex]2nt=(m+1)\lambda[/tex]
So,
[tex]\lambda=\dfrac{2nt}{m}\\\Rightarrow 642=\dfrac{2nt}{m}[/tex]
and
[tex]428=\dfrac{2nt}{m+1}[/tex]
Dividing the wavelengths we get
[tex]\dfrac{642}{428}=\dfrac{m+1}{m}\\\Rightarrow 1.5 m=m+1\\\Rightarrow m=\frac{1}{0.5}\\\Rightarrow m=2[/tex]
[tex]t=\dfrac{m\lambda}{2n}\\\Rightarrow t=\dfrac{2\lambda}{2n}\\\Rightarrow t=\dfrac{642}{1.45}\\\Rightarrow t=442.75862\ nm[/tex]
The film thickness of oil is 442.75862 nm