Respuesta :
Answer:
[tex]10.63952sin(209.43951t)[/tex]
10.63952 V
Explanation:
[tex]N_t[/tex] = Number of turns = 200
[tex]\phi_B[/tex] = Magnetic flux = [tex]2.5\times 10^{-4}cos(\omega t)[/tex]
[tex]\omega_e[/tex] = Engine angular speed = [tex]1\times 10^{3}\ rpm[/tex]
Alternator angular speed is given by
[tex]N_a=2\times \omega_e\\\Rightarrow N_a=2\times 1\times 10^{3}\\\Rightarrow N_a=2\times 10^{3}\ rpm[/tex]
[tex]\omega=N_a\dfrac{2\pi}{60}\\\Rightarrow \omega=2\times 10^{3}\dfrac{2\pi}{60}\\\Rightarrow \omega=209.43951\ rad/s[/tex]
Induced emf is given by
[tex]\epsilon=-N_t\dfrac{d\phi_B}{dt}\\\Rightarrow \epsilon=-200\dfrac{d}{dt}2.54\times 10^{-4}cos(209.43951 t)\\\Rightarrow \epsilon=200\times 2.54\times 10^{-4}\times 209.43951 sin(209.43951t)\\\Rightarrow \epsilon=10.63952sin(209.43951t)[/tex]
The function is [tex]10.63952sin(209.43951t)[/tex]
The induced maximum emf is 10.63952 V
The induced emf in the alternator as a function of time is 0.05cos(314.2t).
The maximum emf in the alternator is 0.05 V.
Induced emf in the coil
The emf induced in the coil is calculated as follows;
emf = NdФ/dt
where;
- N is number of turns
- Ф is magnetic flux = BA
The alternator angular speed
ωa = 3ω
ωa = 3 x 1 x 10³ x 2π x 1/60 s = 314.2 rad/s
emf = 200 x 2.5 x 10⁻⁴ x cos(314.2t)
emf = 0.05cos(314.2t)
Thus, the maximum emf in the alternator is 0.05 V.
Learn more about induced emf here: https://brainly.com/question/13744192