Answer:
962291.57928 m²
Explanation:
[tex]P_r[/tex] = Pressure = [tex]2\dfrac{I}{c}[/tex] (full reflection)
I = Intensity = [tex]\dfrac{P}{A}=\dfrac{P}{4\pi r^2}[/tex]
P = Power = [tex]3.9\times 10^{26}\ W[/tex]
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
M = Mass of Sun = [tex]1.99\times 10^{30}\ kg[/tex]
m = Mass of ship = 1500 kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
Force of radiation is given by
[tex]F_r=P_rA\\\Rightarrow F_r=2\dfrac{I}{c}\times A\\\Rightarrow F_r=2\dfrac{P}{4\pi r^2c} A[/tex]
This force will balance the gravitational force as stated in the question
[tex]\dfrac{GMm}{r^2}=2\dfrac{P}{4\pi r^2c} A\\\Rightarrow A=\dfrac{4\pi cGMm}{2P}\\\Rightarrow A=\dfrac{4\times \pi\times 3\times 10^8\times 6.67\times 10^{-11}\times 1.99\times 10^{30}\times 1500}{2\times 3.9\times 10^{26}}\\\Rightarrow A=962291.57928\ m^2[/tex]
The area of the must be 962291.57928 m²