Respuesta :

gmany

Answer:

The graph is in the attachment.

Step-by-step explanation:

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

m - slope

(x₁, y₁) - a point on a line

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept → (0, b)

We have the equation in a point-slope form:

[tex]y+7=-\dfrac{4}{5}(x-4)[/tex]

[tex]y-(-7)=-\dfrac{4}{5}(x-4)[/tex]

Therefore we have one point: (4, -7).

Convert to the slope-intercept form:

[tex]y+7=-\dfrac{4}{5}(x-4)[/tex]              use the distributive property

[tex]y+7=-\dfrac{4}{5}x+\left(-\dfrac{4}{5}\right)(-4)[/tex]

[tex]y+7=-\dfrac{4}{5}x+\dfrac{16}{5}[/tex]

[tex]y+7=-\dfrac{4}{5}x+3\dfrac{1}{5}[/tex]          subtract 7 from both sides

[tex]y=-\dfrac{4}{5}x-3\dfrac{4}{5}[/tex]

Put x = -1 to the equation:

[tex]y=-\dfrac{4}{5}(-1)-3\dfrac{4}{5}=\dfrac{4}{5}-3\dfrac{4}{5}=-3[/tex]

Therefore we have the second point (-1, -3).

Ver imagen gmany