Answer:
Speed of 1.83 m/s and 6.83 m/s
Explanation:
From the principle of conservation of momentum
[tex]mv_o=m(v_1 + v_2) [/tex] where m is the mass, [tex]v_o[/tex] is the initial speed before impact, [tex]v_1[/tex] and [tex]v_2[/tex] are velocity of the impacting object after collision and velocity after impact of the originally constant object
[tex]5m=m(v_1 +v_2) [/tex]
Therefore [tex]v_1+v_2=5[/tex]
After collision, kinetic energy doubles hence
[tex]2m*(0.5mv_o)=0.5m(v_1^{2}+v_2^{2})[/tex]
[tex]2v_o^{2}=v_1^{2} + v_2^{2}[/tex]
Substituting 5 m/s for [tex]v_o[/tex] then
[tex]2*(5^{2})= v_1^{2} + v_2^{2}[/tex]
[tex]50= v_1^{2} + v_2^{2}[/tex]
Also, it’s known that [tex]v_1+v_2=5[/tex] hence [tex]v_1=5-v_2[/tex]
[tex]50=(5-v_2)^{2}+ v_2^{2}[/tex]
[tex]50=25+v_2^{2}-10v_2+v_2^{2}[/tex]
[tex]2v_2^{2}-10v_2-25=0[/tex]
Solving the equation using quadratic formula where a=2, b=-10 and c=-25 then [tex]v_2=6.83 m/s[/tex]
Substituting, [tex]v_1=-1.83 m/s[/tex]
Therefore, the blocks move at a speed of 1.83 m/s and 6.83 m/s