Respuesta :

Answer:

The measure of side BC = 5 unit and The measure of side AC = 5 unit

Step-by-step explanation:

Given as :

In a triangle ΔABC

The measure of side = AB = 5[tex]\sqrt{2}[/tex] unit

The measure of angle A = ∠A = 45°

The measure of angle C = ∠C = 30°

Now, For a triangle the sum of three angles of triangle = 180°

∴, ∠A + ∠B + ∠C = 180°

Or, 45° + ∠B +30° = 180°

Or , ∠B =  180° - ( 45° +  30°)

Or,  ∠B =  180° - 75°

i.e  ∠B =  105°

Now, From figure

Sin 45°  = [tex]\dfrac{\textrm BC}{\textrm AB}[/tex]

Or, [tex]\frac{1}{\sqrt{2} }[/tex] = [tex]\dfrac{\textrm BC}{5\sqrt{2}}[/tex]

Or, BC = [tex]\frac{5\sqrt{2} }{\sqrt{2} }[/tex]

BC = 5

So, The measure of side BC = 5 unit

Again , from figure

Cos 45°  = [tex]\dfrac{\textrm AC}{\textrm AB}[/tex]

Or, [tex]\frac{1}{\sqrt{2} }[/tex] =[tex]\dfrac{\textrm AC}{5\sqrt{2}}[/tex]

Or, AC = [tex]\frac{5\sqrt{2} }{\sqrt{2} }[/tex]

∴  AC = 5

So, The measure of side AC = 5 unit

Hence The measure of side BC = 5 unit and The measure of side AC = 5 unit  Answer

Ver imagen WaywardDelaney