Respuesta :

Answer:

The three points for the line  -2y = -x + 8 are

point A( x₁ , y₁) ≡ ( 0 ,-4)

point B( x₂ , y₂) ≡ (8 , 0)

point C(x₃ , y₃ ) ≡ (2 , -3)

The Graph is attached below.

Step-by-step explanation:

Given:

-2y = -x + 8........... equation of a line

Let the points be point A, and point B  

To Find:

point A( x₁ , y₁) ≡  ?

point B( x₂ , y₂) ≡ ?

point C(x₃ , y₃ ) ≡ ?

Solution:

For Drawing a graph we require minimum two points but we will have here three points.

For point A( x₁ , y₁)

Put x = 0 in the given equation we get

-2y = -x + 8

-2y = 0 + 8

∴ [tex]y=\frac{-8}{2} \\\\y=-4[/tex]

∴ point A( x₁ , y₁) ≡ ( 0 ,-4)

For point B( x₂ , y₂)

Put y= 0 in the given equation we get

-2 × 0 = -x + 8

x =  8

∴ point B( x₂ , y₂)  ≡ (8 , 0)

For point C(x₃ , y₃ )

Put x = 2 in the given equation we get  

-2y = -2 + 8

-2y = 6

y = - 3

∴ point C(x₃ , y₃ )≡ (2 , -3)

Therefore,

The three points for the line  -2y = -x + 8 are

point A( x₁ , y₁) ≡ ( 0 ,-4) (blue color point on the graph)

point B( x₂ , y₂) ≡ (8 , 0) (green color point on the graph)

point C(x₃ , y₃ ) ≡ (2 , -3) (purple color point on the graph)

The Graph is attached below..

Ver imagen inchu420