The density of solid W is 19.3 g/cm^3. How many atoms are present per cubic centimeter of W?
.......... atoms cm^3

As a solid, W adopts a body-centered cubic unit cell. How many unit cells are present per cubic centimeter of W?
.............. unit cells/cm^3

What is the volume of a unit cell of this metal?
............ cm^3

What is the edge length of a unit cell of W?
.............cm

Respuesta :

Answer:

Atoms present per cm³ of Ag = [tex]0.105\ mol/cm^3\times 6.023\times 10^{23}\ atoms/mol=6.32\times 10^{22}\ atoms/cm^3[/tex]

Unit cells which are present per cubic centimeter of W = [tex]3.16\times 10^{22}\ unit\ cells /cm^3[/tex]

Volume = [tex]31.6\times 10^{-24}\ cm^3[/tex]

Edge length = [tex]3.16\times 10^{-8}\ cm[/tex]

Explanation:

Given that:-

The density of the solid W = 19.3 g/cm³

Molar mass of W = 183.84 g/mol

So, Moles present per cm³ of Ag = [tex]\frac{19.3\ g/cm^3}{183.84\ g/mol}[/tex]=0.105 mol/cm³

Also, 1 mole = [tex]6.023\times 10^{23}[/tex] atoms.

So,  

Atoms present per cm³ of Ag = [tex]0.105\ mol/cm^3\times 6.023\times 10^{23}\ atoms/mol=6.32\times 10^{22}\ atoms/cm^3[/tex]

Thus, answer = [tex]6.32\times 10^{22}\ atoms/cm^3[/tex]

In BCC, the number of atoms  in the unit cell = 2

So,

Unit cells which are present per cubic centimeter of W = [tex]\frac{6.32\times 10^{22}\ atoms/cm^3}{2}=3.16\times 10^{22}\ unit\ cells /cm^3[/tex]

Unit cells which are present per cubic centimeter of W = [tex]3.16\times 10^{22}\ unit\ cells /cm^3[/tex]

The reciprocal of the unit cell/cm³ is the volume of the unit cell.

So, [tex]Volume=\frac{1}{3.16\times 10^{22}\ unit\ cells /cm^3}=31.6\times 10^{-24}\ cm^3[/tex]

Volume = [tex]31.6\times 10^{-24}\ cm^3[/tex]

Also, Volume = [tex]{(Edge\ length)}^3[/tex]

Thus, edge length = [tex]{Volume}^{\frac{1}{3}}[/tex] = [tex]\left(31.6\times \:\:10^{-24}\right)^{\frac{1}{3}}\ cm=4.1\times 10^{-8}\ cm[/tex]

Edge length = [tex]3.16\times 10^{-8}\ cm[/tex]

The unit cells present per cubic centimeter of W are [tex]\bold{ 3.16 \times10^2^2\;unit\;cell/cm^3} [/tex]

The volume of a unit cell of this metal is  [tex]\bold{31.6\times 10^-^2^4\;cm^3} [/tex].

The edge length is  [tex]\bold{4.1 \times 10^8\;cm}

What is density?

Density can be defined as the mass per unit volume.

Given,

The density of W is [tex]\bold{19.3\; g/cm^3}[/tex]

Molar mass of W = 183.84 g/mol

Step 1: Moles present per cm³ of Ag is [tex]\bold{\dfrac{19.3\;g/cm^3}{183.84\;g/mol} = 0.105\;mol/cm^3}[/tex]

1 mole =  [tex]\bold{6.023\times 10^2^3\;atoms}[/tex]

Then, Atoms present per cm³ of Ag is

[tex]6.32\times 10^2^2\;atoms/cm^3[/tex]

In BCC, the number of atoms  in the unit cell = 2

Unit cells which are present per cubic centimeter of W =

[tex]\bold{\frac{6.32\times 10^2^2\;atoms}{2}= 3.16 \times10^2^2\;unit\;cell/cm^3} [/tex]

Step2: Now, calculating the volume of a unit cell of the metal

[tex]\bold{volume =\dfrac{1}{3.16 \times10^2^2\;unit\;cell/cm^3} = 31.6\times 10^-^2^4\;cm^3} [/tex]

Thus, the volume is  [tex]\bold{31.6\times 10^-^2^4\;cm^3} [/tex]

Step 3: calculating the edge length

[tex]\bold{Volume^\dfrac{1}{3} \times(31.6 \times 10^-2^4)^\dfrac{1}{3} \\\\

cm = 4.1 \times 10^8\;cm}

Thus, The unit cells present per cubic centimeter of W are [tex]\bold{ 3.16 \times10^2^2\;unit\;cell/cm^3} [/tex]

The volume of a unit cell of this metal is  [tex]\bold{31.6\times 10^-^2^4\;cm^3} [/tex].

The edge length is  [tex]\bold{4.1 \times 10^8\;cm}

Learn more about density, here:

https://brainly.com/question/952755

Also, Volume =

Thus, edge length = =

Edge length =