If the measure of angle 2 is (5x+14) and angle 3 is (7x-14), what is the measure of angle 1 in degrees?

Answer:
D) 91°
Step-by-step explanation:
From the figure we can write the angle relationship as follows:
[tex]m\angle 1=m\angle 3[/tex] [Vertical angles are congruent]
[tex]m\angle 2=m\angle 4[/tex] [Vertical angles are congruent]
[tex]m\angle 2+m\angle 3=180\°[/tex] [Linear pair of angles have sum = 180°]
We are given:
[tex]m\angle 2=5x+14[/tex]
[tex]m\angle 3=7x-14[/tex]
We know, [tex]m\angle 2+m\angle 3=180\°[/tex]
So, we have:
[tex]5x+14+7x-14=180[/tex]
Solving for [tex]x[/tex]
Combining like terms
[tex]12x=180[/tex]
Dividing both sides by 12.
[tex]\frac{12x}{12}=\frac{180}{12}[/tex]
[tex]x=15[/tex]
Using [tex]x=15[/tex] to evaluate ∠3
[tex]m\angle 3 = 7(15)-14=105-14=91\°[/tex]
We know [tex]m\angle 1=m\angle 3[/tex]
∴ [tex]m\angle 1=91\°[/tex] (Answer)
Answer:
91
Step-by-step explanation:
From the figure we can write the angle relationship as follows:
m\angle 1=m\angle 3m∠1=m∠3 [Vertical angles are congruent]
m\angle 2=m\angle 4m∠2=m∠4 [Vertical angles are congruent]
$m\angle 2+m\angle 3=180\°$ [Linear pair of angles have sum = 180°]
We are given:
$m\angle 2=5x+14$
$m\angle 3=7x-14$
We know, $m\angle 2+m\angle 3=180\°$
So, we have:
$5x+14+7x-14=180$
Solving for $x$
Combining like terms
$12x=180$
Dividing both sides by 12.
$\frac{12x}{12}=\frac{180}{12}$
$x=15$
Using $x=15$ to evaluate ∠3
$m\angle 3 = 7(15)-14=105-14=91\°$
We know $m\angle 1=m\angle 3$
∴ $m\angle 1=91\°$ (Answer)