contestada

An alpha particle with kinetic energy 11.0 MeV makes a collision with lead nucleus, but it is not "aimed" at the center of the lead nucleus, and has an initial nonzero angular momentum (with respect to the stationary lead nucleus) of magnitude L=p0b, where p0 is the magnitude of the initial momentum of the alpha particle and b=1.00×10^−12 m . (Assume that the lead nucleus remains stationary and that it may be treated as a point charge. The atomic number of lead is 82. The alpha particle is a helium nucleus, with atomic number 2.

A) What is the distance of closest approach?
B) Repeat for b=1.10×10^−13 m .
C) Repeat for b=1.00×10^−14 m .

Respuesta :

Answer:

Explanation:

a) The total energy at closest approach is the kinetic energy + potential energy at that point. Let [tex]v_0[/tex] be the velocity and [tex]r_0[/tex] the distance at the closest approach.

The total energy there is then  

[tex]PE =\frac{K\times q_1\times q_2}{r_0}

\\\\KE = 0.5\times m\times v_0^2[/tex]

Total energy

[tex]U(r_0) =\frac{K\times q_1\times q_2}{r_0} + 0.5\times m\times v_0^2[/tex]

Using conservation of angular momentum,

[tex]initial = v_{\infty}\times m\times b

[/tex]

at [tex]r_0 = v_0\times m\times r_0[/tex]

These must be equal so

[tex]v_{\infty}\times m\times b = v_0\times m\times r_0\\v_0=\frac{v_{\infty}\times b}{r_0}

[/tex]

substitute this for tex]v_0[/tex] in the energy equation

[tex]U(r_0) = \frac{K\times q_1\times q_2}{r_0} + \frac{0.5\times m\times v_{\infty}^2\times b^2}{r_0^2}

[/tex]

This must equal the initial kinetic energy [tex]U_{\infty}= (11 MeV)[/tex]

[tex]U_\infty= \frac{K\times q_1\times q_2}{r_0} + \frac{0.5\times m\times v_{\infty}^2\times b^2}{r_0^2}[/tex]

however, [tex]0.5\times m\times v_{\infty}^2 = U_{\infty}[/tex]

[tex]U_\infty= \frac{K\times q_1\times q_2}{r_0} + \frac{U_{\infty}\times b^2}{r_0^2}[/tex]

[tex]U_{\infty}\times r_0^2 - (K\times q_1\times q_2)\times r_0 - U_{\infty}\times b^2 = 0\\\\r_0^2 - (\frac{K\times q_1\times q_2}{U_{\infty})\times r_0 - b^2 = 0[/tex]

[tex]U_{\infty} = 11\times 10^6\times 1.6\times 10^{-19} J = 1.76\times 10^{-12} J[/tex]  

 

[tex]q_1 = 2e = 3.2\times 10^{-19} C\\q_2 = 82e = 131.2\times 10^{-19} C\\K\times q_1\times q_2 = 3.78\times 10^{-26}\\\frac{K\times q_1\times q_2}{U_{\infty}} = 2.15\times 10^{-14}[/tex]

[tex]r_0^2 - 2.15\times 10^(-14)\times r_0 - 1.69\times 10^{-24} = 0;

r_0 = 1.31\times 10^{-12} m[/tex]

b) [tex]r_0^2 - 2.15\times 10^{-14}\times r_0 - 1.21\times 10^{-26} = 0

\\r_0 = 1.21\times 10^{-13} m

[/tex]

c) [tex]r_0^2 - 2.15\times 10^{-14}\times r_0 - 1.00\times 10^{-28} = 0

\\r_0 = 2.54\times 10^{-14} m[/tex]