Answer:
Step-by-step explanation:
[tex]2\log(2a-1)=0\\\\\text{Domain:}\\\\2a-1>0\qquad\text{add 1 to both sides}\\2a-1+1>0+1\\2a>1\qquad\text{divide both sides by 2}\\\dfrac{2a}{2}>\dfrac{1}{2}\\\boxed{a>0.5}\\============================\\\\2\log(2a-1)=0\qquad\text{divide both sides by 2}\\\\\dfrac{2\!\!\!\!\diagup\log(2a-1)}{2\!\!\!\!\diagup}=\dfrac{0}{2}\\\\\log(2a-1)=0\qquad\text{use}\ \log_ab=c\iff b=a^c\\\\\log(2a-1)=\log10^0\\\\\log(2a-1)=\log1\iff2a-1=1\qquad\text{add 1 to both sides}\\\\2a-1+1=1+1\\\\2a=2\qquad\text{divide both sides by 2}\\\\\dfrac{2a}{2}=\dfrac{2}{2}\\\\a=1\in D[/tex]