Respuesta :

Answer: [tex]x=\sqrt{17}-5[/tex] and [tex]x = -\sqrt{17}-5[/tex]

Step-by-step explanation:

Alright, lets get started.

The given equation is :

[tex]x^{2} +10x = -8[/tex]

Adding 8 in both sides, it will become

[tex]x^{2} +10x + 8 = -8 +8[/tex]

[tex]x^{2} +10x + 8 = 0[/tex]

To make it perfect square, we need to add 25 and subtract 25

[tex]x^{2} +10x + 8 +25-25= 0[/tex]

[tex]x^2+10x+25+8-25=0[/tex]

[tex](x+5)^2+8-25=0[/tex]

[tex](x+5)^2-17=0[/tex]

Adding 17 in both sides  

[tex](x+5)^2=17[/tex]  

taking square root

[tex]x+5=\sqrt{17}[/tex]

So,

[tex]x=\sqrt{17}-5[/tex] and [tex]x = -\sqrt{17}-5[/tex]  .. Answer

Hope it will help :)

Answer:

Step-by-step explanation:

X² + 10x = -8

add to both side the square of half the coefficient of X which is 5²

X² + 10x + (10/2)² = -8 + (10/2)²

X² + 5² = -8 + 5²

( X + 5 )² = -8 + 25

(X + 5)² = 17

X + 5 = +- √17

Therefore, X = -5 +- √17.

X = -5 + √17 , -5 - √17.