Respuesta :

Answer:

The rate of the equation is r when r is a constant

Step-by-step explanation:

     We need to solve for the rate of the equation  

     d = rt

     Differentiating on both sides with respect to time

     [tex]\frac{\mathrm{d} d}{\mathrm{d} t}[/tex] = [tex]\frac{\mathrm{d} rt}{\mathrm{d} t}[/tex]

      Considering r as a constant

       [tex]\frac{\mathrm{d} d}{\mathrm{d} t}[/tex] =  r×[tex]\frac{\mathrm{d} t}{\mathrm{d} t}[/tex]

      where, [tex]\frac{\mathrm{d} t}{\mathrm{d} t}[/tex] = 1

       [tex]\frac{\mathrm{d} d}{\mathrm{d} t}[/tex] = r

       The rate of the equation is r when r is a constant