Respuesta :

Step-by-step explanation:

  a. separate the variables

       [tex]\frac{\mathrm{d} y}{\mathrm{d} x}[/tex] = 500-y

       dy/(500-y) = dx

  b. integrating your equation in part a to find the general equation of

      differential

      Integrating on both sides

        [tex]\int[/tex]dy/(500-y) = [tex]\int[/tex]dx

        -㏑(500-y) = x +C ..............(1)

        where C is constant of integration

c.  If    y(0) = 7

       putting in equation (1)

       -㏑(500-7) = 0+C

        C = -㏑493

d. The particular solution is

     -㏑(500-y) = x -㏑473

    ㏑473/(500-y) = x

    473 = (500-y)[tex]e^x[/tex]