Respuesta :

Answer:

Part 22) [tex]m\angle 3=45^o[/tex]

Part 23) [tex]XQ=15\ units[/tex]

Part 24) [tex]m\angle 5=90^o[/tex]

Part 25) [tex]m\angle 1=20^o[/tex]

Part 26) [tex]GI=20\ units[/tex]

Part 27) [tex]JM=10\ units[/tex]

Step-by-step explanation:

Part 22) Find the measure of angle 3

we know that

The diagonals of a square are perpendicular bisectors of each other, and diagonals bisect the angles

so

[tex]m\angle 3+m\angle 4=90^o[/tex] -->  The measure of each interior angle of a square is 90 degrees

[tex]m\angle 3=m\angle 4[/tex] ---> diagonals bisect the angles

therefore

[tex]m\angle 3=45^o[/tex]

Part 23) Find the length of segment XQ

we know that

[tex]XQ=\frac{1}{2}ZX[/tex] ---> diagonals of a square are perpendicular bisectors of each other

we have

[tex]ZX=30\ units[/tex]

substitute

[tex]XQ=\frac{1}{2}(30)=15\ units[/tex]

Part 24) Find the measure of angle 5

we know that

[tex]m\angle Q+m\angle 5=180^o[/tex] -->form a linear pair

Remember that

Diagonals of a square are perpendicular bisectors of each other

so

tex]m\angle Q=m\angle 5[/tex]

therefore

[tex]m\angle 5=90^o[/tex]

Part 25) Find the measure of angle 1

we know that

The measure of each interior angle of a rectangle is 90 degrees

so

[tex]m\angle 1+m\angle 2=90^o[/tex] ---> by complementary angles

we have that

[tex]m\angle 2=70^o[/tex]

substitute

[tex]m\angle 1+70^o=90^o[/tex]

[tex]m\angle 1=90^o-70^o[/tex]

[tex]m\angle 1=20^o[/tex]

Part 26) Find the measure of GI

we know that

The diagonals of a rectangle are congruent

so

JH=GI

we have

[tex]JH=20\ units[/tex]

therefore

[tex]GI=20\ units[/tex]

Part 27) Find the measure of JM

we know that

In a rectangle, the point where the diagonals intersect, divides each diagonal into two equal parts

so

[tex]JM=MH[/tex]

[tex]JM=\frac{1}{2}JH[/tex]

we have

[tex]JH=20\ units[/tex]

substitute

[tex]JM=\frac{1}{2}(20)[/tex]

[tex]JM=10\ units[/tex]