Respuesta :

Answer:

1)7.288 feet

2)11.6 feet

3)safe

4) 3.7 feet

5) ∅[tex]= tan^{-1}(1.5) = 56.31 degrees[/tex]

6)∅1[tex]= tan^{-1}(2) = 63.43 degrees[/tex]

  ∅2[tex]= tan^{-1}(1.2) = 50.19 degrees[/tex]

Step-by-step explanation:

1) The door barn is rectangular in shape. The length is 9 feet and The angle between diagonal and side is 39 degrees.

Applying trigonometry,

tan(39) = [tex]\frac{opposite}{adjacent} = \frac{s}{9}[/tex] = 0.809

Thus, s= [tex](9)(0.809) = 7.288 feet[/tex]

2) Applying pythagoras theorm,

   [tex](Diagonal)^{2} = (9)^{2} + (7.288)^{2} =134.115[/tex]

  Diagonal length (d) = 11.58 feet. Nearest tenth place = 11.6 feet

3) The length of ladder is 14 foot and height from ground is 13.5 feet.

Applying trigonometry,

sin(∅) =  [tex]\frac{opposite}{hypotenous} = \frac{13.5}{14}[/tex] = 0.964

∅ = angle of elevation = [tex]sin^{-1}(0.964)[/tex] = 74.57 ≈ 75 degrees.

Thus tractor can climb safely.

4)Applying, pythgoras theorm,

[tex]14^{2} = (13.5)^{2}  + x^{2}[/tex]

x = [tex]\sqrt{14^{2}-(13.5)^{2}} = 3.708[/tex]

Thus, ladder should be placed at distance 3.7 feet

5)Let angle of elevation be ∅.

  tan(∅) = [tex]\frac{30}{20} = 1.5[/tex]

  ∅[tex]= tan^{-1}(1.5) = 56.31 degrees[/tex]

6)After moving 5 feet closer to barn, Let angle of elevation for light near barn be ∅1 and for farther one be ∅2.

Thus,

tan(∅1) = [tex]\frac{30}{15} = 2[/tex]

  ∅1[tex]= tan^{-1}(2) = 63.43 degrees[/tex]

tan(∅2) = [tex]\frac{30}{25} = 1.2[/tex]

  ∅2[tex]= tan^{-1}(1.2) = 50.19 degrees[/tex]