Answer: The value of [tex]K_p[/tex] is 324
Explanation:
We are given:
Initial pressure of [tex]S_8(g)[/tex] = 1.00 atm
The chemical equation for the conversion of [tex]S_8(g)[/tex] to [tex]S_2(g)[/tex] follows:
[tex]S_8(g)\rightleftharpoons 4S_2(g)[/tex]
Initial: 1
At eqllm: 1-x 4x
We are given:
Equilibrium partial pressure of [tex]S_8(g)=0.25atm[/tex]
Evaluating the value of 'x', we get:
[tex]\Rightarrow (1-x)=0.25\\\\\Rightarrow x=1-0.25=0.75[/tex]
The expression of [tex]K_p[/tex] for the above reaction follows:
[tex]K_p=\frac{(p_{S_2})^4}{p_{S_8}}[/tex]
[tex]p_{S_2}=4x=(4\times 0.75)=3atm[/tex]
[tex]p_{S_8}=0.25atm[/tex]
Putting values in above expression, we get:
[tex]K_p=\frac{3^4}{0.25}\\\\K_p=324[/tex]
Hence, the value of [tex]K_p[/tex] is 324