Respuesta :
Answer:
a) d: 6,3.9,6.4,3.8,4.7,6.7,3.7,6,5.8,2.7,5.3,3.3,1.4,7.1,6.4,2.4
b) [tex]\bar d= \frac{\sum_{i=1}^n d_i}{n}=4.725[/tex]
[tex]s_d =\frac{\sum_{i=1}^n (d_i -\bar d)^2}{n-1} =1.733[/tex]
Step-by-step explanation:
x=test weight before , y = test weight after
x: 55.7, 54.9, 59.6, 62.3, 74.2 ,75.6, 70.7, 53.3,73.3, 63.4, 68.1, 73.7, 91.7, 55.9, 61.7, 57.8
y: 61.7, 58.8, 66.0, 66.1, 78.9, 82.3, 74.4, 59.3,79.1, 66.1, 73.4, 77.0, 93.1, 63.0, 68.1, 60.2
(a) For each subject, subtract the weight before from the weight after to determine the weight change in kg.
For this case we can define the difference [tex]d_i=y_i-x_i[/tex] and we obtain this:
Individual 1 : d1=61.7-55.7=6 Individual 2 : d2=58.8-54.9=3.9
Individual 3 : d3=66.0-59.6=6.4 Individual 4 : d4=66.1-62.3=3.8
Individual 5 : d5=78.9-74.2=4.7 Individual 6 : d6=82.3-75.6=6.7
Individual 7 : d7=74.4-70.7=3.7 Individual 8 : d8=59.3-53.3=6
Individual 9 : d9=79.1-73.3=5.8 Individual 10 : d10=66.1-63.4=2.7
Individual 11 : d11=73.4-68.1=5.3 Individual 12 : d12=77.0-73.7=3.3
Individual 13 : d13=93.1-91.7=1.4 Individual 14 : d14=63-55.9=7.1
Individual 15 : d15=68.1-61.7=6.4 Individual 16 : d16=60.2-57.8=2.4
(b) Find the mean and the standard deviation for the weight change. (Round your answers to four decimal places.)
We can calculate the mean difference like this:
[tex]\bar d= \frac{\sum_{i=1}^n d_i}{n}=4.725[/tex]
The third step would be calculate the standard deviation for the differences, and we got:
[tex]s_d =\frac{\sum_{i=1}^n (d_i -\bar d)^2}{n-1} =1.733[/tex]