Respuesta :

Answer:

[tex]62\ in^2[/tex]

Step-by-step explanation:

we know that

The area of the composite figure is equal to the area of a right triangle plus the area of rectangle

see the attached figure to better understand the problem

step 1

Find the area of the right triangle

we know that

The area of triangle is

[tex]A=\frac{1}{2}(b)(h)[/tex]

where

[tex]b=7-4=3\ in\\h=12-8=4\ in[/tex]

substitute

[tex]A_1=\frac{1}{2}(3)(4)=6\ in^2[/tex]

step 2

Find the area of rectangle

The area of rectangle is equal to

[tex]A=LW[/tex]

where

[tex]L=8\ in\\W=7\ in[/tex]

substitute

[tex]A_2=(8)(7)=56\ in^2[/tex]

step 3

Find the area of the composite figure

Adds the areas

[tex]A=A_1+A_2[/tex]

[tex]A=6+56=62\ in^2[/tex]

Ver imagen calculista