Line Segment BC has endpoints B (3,5) and C (7,15). Find the missing coordinates of A (x,9) and D (17,y) such that AB and CD are perpendicular to BC.

Respuesta :

Answer:

x=-7

y=11

Step-by-step explanation:

Perpendicular Vectors

Two vectors defined as their endpoints [tex]\vec u=<a,b>[/tex] and [tex]\vec v=<c,d>[/tex] are perpendicular if their dot product a.b is zero. The dot product is

[tex]\vec u.\vec v=ac+bd[/tex]

In other words

ac+bd=0

Let's treat all the points as the extremes of vectors, so we can easily find the missing coordinates

B (3,5) and C (7,15) define a segment, the vector  

[tex]\overrightarrow{BC}=<7-3,15-5>=<4,10>[/tex]

The point A is A (x,9), we need to form a vector with B

[tex]\overrightarrow{AB}=<x-3,9-5>=<x-3,4>[/tex]

this vector must be perpendicular to BC, so, applying the dot product we have

[tex]4(x-3)+40=0[/tex]

[tex]4x-12=-40[/tex]

[tex]x=-7[/tex]

The point D is D(17,y), we need to form a vector with C

[tex]\overrightarrow{CD}=<17-7,y-15>=<10,y-15>[/tex]

this vector must be perpendicular to BC, so, applying the dot product we have

[tex](4)(10)+(10)(y-15)=0[/tex]

[tex]40+10y-150=0[/tex]

[tex]10y=110[/tex]

[tex]y=11[/tex]

The points are

[tex]\boxed{A(-7,9), D(17,11)}[/tex]