Respuesta :

Answer:

Option A.

Step-by-step explanation:

Consider the given problem is

[tex]3\sqrt{\frac{7}{25}}-\sqrt{\frac{28}{25}}+\sqrt{\frac{63}{25}}[/tex]

Using the properties of radical expressions we get

[tex]3\cdot \frac{\sqrt{7}}{\sqrt{25}}-\frac{\sqrt{28}}{\sqrt{25}}+\frac{\sqrt{63}}{\sqrt{25}}[/tex]             [tex][\because \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}][/tex]

[tex]3\cdot \frac{\sqrt{7}}{\sqrt{25}}-\frac{\sqrt{4}\sqrt{7}}{\sqrt{25}}+\frac{\sqrt{9}\sqrt{7}}{\sqrt{25}}[/tex]              [tex][\because \sqrt{ab}=\sqrt{a}\sqrt{b}][/tex]

[tex]3\cdot \frac{\sqrt{7}}{5}-\frac{2\sqrt{7}}{5}+\frac{3\sqrt{7}}{5}[/tex]

Taking out common factors.

[tex]\frac{\sqrt{7}}{5}(3-2+3)[/tex]

[tex]\frac{\sqrt{7}}{5}(4)[/tex]

[tex]\frac{4\sqrt{7}}{5}[/tex]

The simplified form of given expression is [tex]\frac{4}{5}\sqrt{7}[/tex]

Therefore, the correct option is A.