Respuesta :
Step-by-step explanation:
The formula for arc length [for the angle in degrees] is:
[tex]L = 2\pi r \left(\dfrac{n}{360}\right)[/tex]
here,
[tex]n[/tex] = degrees
[tex]r[/tex] = radius
using this we'll solve all the parts:
r = 10, n = 20:
[tex]L = 2\pi r \left(\dfrac{n}{360}\right)[/tex]
[tex]L = 2\pi (10) \left(\dfrac{20}{360}\right)[/tex]
from here, it is just simplification:
2 and 360 can be resolved: 360 divided by 2 = 180
[tex]L = \pi (10) \left(\dfrac{20}{180}\right)[/tex]
10 and 180 can be resolved: 180 divided by 10 = 18
[tex]L = \pi \left(\dfrac{20}{18}\right)[/tex]
finally, both 20 and 18 are multiples of 2 and can be resolved:
[tex]L = \pi \left(\dfrac{10}{9}\right)[/tex]
[tex]L = \dfrac{10\pi}{9}[/tex] Option (E)
r=3, n=6:
[tex]L = 2\pi r \left(\dfrac{n}{360}\right)[/tex]
[tex]L = 2\pi (3) \left(\dfrac{6}{360}\right)[/tex]
[tex]L = \dfrac{\pi}{10}[/tex] Option (D)
r=4 n=7
[tex]L = 2\pi r \left(\dfrac{n}{360}\right)[/tex]
[tex]L = 2\pi (4) \left(\dfrac{7}{360}\right)[/tex]
[tex]L = \dfrac{7\pi}{45}[/tex] Option (C)
r=2 n=x
[tex]L = 2\pi r \left(\dfrac{n}{360}\right)[/tex]
[tex]L = 2\pi (2) \left(\dfrac{x}{360}\right)[/tex]
[tex]L = \dfrac{x\pi}{90}[/tex] Option (D)
r=y n=x
[tex]L = 2\pi r \left(\dfrac{n}{360}\right)[/tex]
[tex]L = 2\pi (y) \left(\dfrac{x}{360}\right)[/tex]
[tex]L = \dfrac{xy\pi}{180}[/tex] Option (E)