The distribution of total body protein in healthy adult men is approximately Normal with mean 12.3 kg and standard deviation 0.1 kg. Reference: Ref 13-9 If you take a random sample of 25 healthy adult men, what is the probability that their average total body protein is between 12.25 and 12.35 kg? Select one: a. 0.9876 b. 0.3829 c. 0.0796 d. 0.0062

Respuesta :

Answer: a. 0.9876

Step-by-step explanation:

Given : The distribution of total body protein in healthy adult men is approximately Normal with mean 12.3 kg and standard deviation 0.1 kg.

[tex]\mu=12.3[/tex] and [tex]\sigma=0.1[/tex]

sample size : n= 25

Let x denotes the  total body protein in healthy adult men in the sample.

Then, the probability that their average total body protein is between 12.25 and 12.35 kg will be :-

[tex]P(12.25<x<12.35)=P(\dfrac{12.25-12.3}{\dfrac{0.1}{\sqrt{25}}}<\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}<\dfrac{12.35-12.3}{\dfrac{0.1}{\sqrt{25}}})\\\\=P(\dfrac{-0.05}{\dfrac{0.1}{5}}<\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}<\dfrac{0.05}{\dfrac{0.1}{5}})\\\\=P(-2.5<z<2.5)\ \ [\because\ z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=P(z<2.5)-P(z<-2.5)\\\\=P(z<2.5)-(1-P(z<2.5))\ \ [\because\ P(Z<-z)=1-P(Z<z)]\\\\=2P(z<2.5)-1\\\\=2(0.9938)-1\ \ [\text{By using z-table}]\\\\=1.9876-1 =0.9876[/tex]

∴ The correct answer is a. 0.9876

Average total body protein is between 12.25 and 12.35 kg, the probability will be "0.9876".

Probability:

According to the question,

Mean, μ = 12.3

Standard deviation, σ = 0.1

Sample size, n = 25

The probability be:

→ P (12.25 < x < 12.35) = [tex]P(\frac{12.25-12.3}{\frac{0.1}{\sqrt{25} } }< \frac{x- \mu}{\frac{\sigma}{\sqrt{n} } } < \frac{12.35-12.3}{\frac{0.1}{\sqrt{25} } } )[/tex]

                                    = [tex]P(\frac{-0.05}{\frac{0.1}{5} } < \frac{x - \mu}{\frac{\sigma}{\sqrt{n} } } < \frac{0.05}{\frac{0.1}{5} } )[/tex]

                                    = [tex]P(-2.5                                     = [tex]P(z<2.5) -P(z<-2.5)[/tex]

                                    = [tex]2P(z< 2.5)-1[/tex]

By using the z-table, we get

                                    = [tex]2(0.9938)-1[/tex]

                                    = [tex]1.9876-1[/tex]

                                    = [tex]0.9876[/tex]

Thus the above answer i.e., "option a" is correct.

Find out more information about probability here:

https://brainly.com/question/24756209