The population of a certain city is projected to grow at the rate given below.

r(t)=1800

(1+(6 t)/(3+t^2))

text( )

(0<=t<=5\)

The rate is measured in people/year, t years from now. The current population is 25,000. What will be the population 5 yr from now?

Respuesta :

Answer:

The population would be 34007.

Step-by-step explanation:

The given equation that shows the population growth rate of a certain city,

[tex]r(t)=1800(1+\frac{6t}{3+t^2}); 0\leq t\leq 5[/tex]

Let P represents the population,

Since, change rate in population = r(t)

[tex]\frac{dP(t)}{dt}=r(t)[/tex]

[tex]\frac{dP(t)}{dt}=1800(1+\frac{6t}{3+t^2})[/tex]

[tex]dP(t)=1800(1+\frac{6t}{3+t^2})dt[/tex]

Integrating both sides,

[tex]\int dP(t)=\int 1800(1+\frac{6t}{3+t^2})dt[/tex]

[tex]P(t)=\int 1800 dt+\int \frac{6t}{3+t^2}dt[/tex]

[tex]P(t)=1800t + \int \frac{6t}{3+t^2}dt[/tex]

Put [tex]3+t^2 = u\implies 2t dt = du[/tex]

[tex]P(t)=1800t + \int \frac{3}{u}du[/tex]

[tex]P(t)=1800t + 3\ln u + C[/tex]

[tex]P(t)=1800t + 3\ln (3+t^2) + C[/tex]

We have P(0) = 25000

[tex]25000 = 1800(0) + 3\ln (3) + C[/tex]

[tex]25000 = 3\ln (3) + C[/tex]

[tex]\implies C = 25000 - 3\ln (3) =24996.70[/tex]

Hence, the function that shows the population after t years,

[tex]P(t)=1800t + 3\ln (3+t^2) + 24996.70[/tex]

At t = 5,

Population after 5 years would be,

[tex]P(5) = 1800(5) + 3\ln (3+5^2) + 24996.70 = 34006.70\approx 34007[/tex]