Answer:
The value of [tex]x= \frac{\bf {22+6y}}{\bf 13}[/tex] and [tex]y= \frac{\bf {13x-22}}{\bf 6}[/tex]
Step-by-step explanation:
Given equation is [tex]13x-6y =22[/tex]
To find the values of x and y:
First find the value of x from the given equation
[tex]13x-6y =22[/tex]
[tex]13x =22-6y[/tex]
[tex]x =\frac{22-6y}{13}[/tex]
Now find the value of y from the given equation
[tex]13x-6y =22[/tex]
[tex]-6y =22-13x[/tex]
[tex]y =\frac{22-13x}{-6y}[/tex]
[tex]y =-\frac{22-13x}{6y}[/tex]
[tex]y =\frac{-22+13x}{6y}[/tex]
[tex]y =\frac{13x-22}{6y}[/tex]
Therefore the values of x and y are [tex]x= \frac {22+6y}{13}[/tex] and [tex]y= \frac {13x-22}{6}[/tex]