Answer:
[tex]E=3.46\times 10^{-19}\ J/atom[/tex]
Explanation:
[tex]E=\frac {h\times c}{\lambda}[/tex]
Where,
h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js/atom[/tex]
c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]
[tex]\lambda[/tex] is the wavelength of the light
Given, [tex]\lambda=574.7\ nm=574.7\times 10^{-9}\ m[/tex]
Thus, applying values as:
[tex]E=\frac{6.626\times 10^{-34}\times 3\times 10^8}{574.7\times 10^{-9}}\ J[/tex]
[tex]E=\frac{10^{-26}\times \:19.878}{10^{-9}\times \:574.7}\ J/atom[/tex]
[tex]E=3.46\times 10^{-19}\ J/atom[/tex]