Given that the wavelength of maximum absorption for chromium is 574.7 nm, what is the energy per Cr atom of the transition for an electron to move from one d orbital to another of higher energy? (h = 6.626 x 10-34 Js/particle, c = 3x108 m/s)

Respuesta :

Answer:

[tex]E=3.46\times 10^{-19}\ J/atom[/tex]

Explanation:

[tex]E=\frac {h\times c}{\lambda}[/tex]

Where,  

h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js/atom[/tex]

c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]

[tex]\lambda[/tex] is the wavelength of the light

Given, [tex]\lambda=574.7\ nm=574.7\times 10^{-9}\ m[/tex]

Thus, applying values as:

[tex]E=\frac{6.626\times 10^{-34}\times 3\times 10^8}{574.7\times 10^{-9}}\ J[/tex]

[tex]E=\frac{10^{-26}\times \:19.878}{10^{-9}\times \:574.7}\ J/atom[/tex]

[tex]E=3.46\times 10^{-19}\ J/atom[/tex]