Answer:
a) p(t) = P 0 e 0066t
b) [tex]P(t)=1000 e^{0.066(2)}=1141.108[/tex]
c) [tex]t=\frac{ln(2)}{0.066}=10.502 years[/tex]
Step-by-step explanation:
Part a
We have the following model:
[tex]\frac{dP}{dt}=0.066P[/tex]
We can rewrite the expression like this:
[tex]\frac{dP}{P}=0.066 dt[/tex]
If we integrate noth sides we got:
[tex]ln(P)=0.066t +C[/tex]
And exponentiating both sides we got this:
[tex]P(t)=P_o e^{0.066t}[/tex]
So the correct option would be:
a) p(t) = P 0 e 0066t
Part b
On this case we want to find the amount of money after two years if the initial investment is 1000 and the value of t=2. If we replace we got:
[tex]P(t)=1000 e^{0.066(2)}=1141.108[/tex]
Part c
On this case we need a value of time in order to duplicate the initial amount invested, so we need to solve the following equation:
[tex]2P_o=P_o e^{0.066(t)}[/tex]
[tex]2=e^{0.066(t)}[/tex]
If we apply natural log on both sides we got:
[tex]ln(2)=0.066 t[/tex]
And if we solve for t we got:
[tex]t=\frac{ln(2)}{0.066}=10.502 years[/tex]