Respuesta :

Answer:

a) [tex]\frac{\sqrt[3]{6} }{\sqrt[4]{6} }    = 6 ^{(\frac{1}{12})  [/tex]

Step-by-step explanation:

Here, the given expression is:

[tex]\frac{\sqrt[3]{6} }{\sqrt[4]{6} }[/tex]

Now, as we know that : [tex]\sqrt[a]{m}   =  m ^{(\frac{1}{a}) \\[/tex]

Applying same in the given expression, we get:

[tex]\sqrt[3]{6}   =  6 ^{(\frac{1}{3})} \\\sqrt[4]{6}   =  6 ^{(\frac{1}{4}) \\\implies \frac{\sqrt[3]{6} }{\sqrt[4]{6} }} \\ = \frac{6 ^{(\frac{1}{3})}}{ 6 ^{\frac{1}{4} }}[/tex]

Also, [tex]\frac{x ^m}{x^n}   =  x ^{(m-n)}[/tex]

Now, [tex]\frac{6 ^{(\frac{1}{3})}}{ 6 ^{\frac{1}{4} }}  =  6 ^{(\frac{1}{3})  -(\frac{1}{4}) }} = 6 ^{(\frac{1}{12})[/tex]

Hence, [tex]\frac{\sqrt[3]{6} }{\sqrt[4]{6} }    = 6 ^{(\frac{1}{12})  [/tex]