Answer:
B. 20%
Step-by-step explanation:
Let x be the charge in hotel P,
∵ Charge in P is 25 percent less than the charge at Hotel R,
⇒ x = charge in R - 25% of charge in R = 75% of charge in R
⇒ [tex]\frac{75}{100}\times \text{charge in R}=x[/tex]
⇒ [tex]\frac{3}{4}\times \text{charge in R}=x[/tex]
⇒ [tex]\text{charge in R}=\frac{4}{3}x[/tex]
Similarly, Charge in P is 10 percent less than the charge at Hotel G,
⇒ x = 90% of charge in G
⇒ [tex]\frac{90}{100}\times \text{charge in G}=x[/tex]
⇒ [tex]\frac{9}{10}\times \text{charge in G}=x[/tex]
⇒ [tex]\text{charge in G}=\frac{10}{9}x[/tex]
Since,
[tex]\frac{\frac{4}{3}x-\frac{10}{9}x}{\frac{10}{9}x}\times 100[/tex]
[tex]=\frac{\frac{12-10}{9}}{\frac{10}{9}}\times 100[/tex]
[tex]=\frac{\frac{2}{9}}{\frac{10}{9}}\times 100[/tex]
[tex]=\frac{1}{5}\times 100[/tex]
[tex]=20\%[/tex]
Hence, the charge for a single room at Hotel R is 20 percent greater than the charge for a single room at Hotel G.