Answer:
[tex]cos(\theta)=(+/-)0.84[/tex]
Step-by-step explanation:
we know that
[tex]sin^2(\theta)+cos^2(\theta)=1[/tex] ----> by trigonometric identity
we have
[tex]sin(\theta)=0.55[/tex]
substitute
[tex](0.55)^2+cos^2(\theta)=1[/tex]
[tex]cos^2(\theta)=1-(0.55)^2[/tex]
[tex]cos^2(\theta)=0.6975[/tex]
[tex]cos(\theta)=(+/-)\sqrt{0.6975}[/tex]
[tex]cos(\theta)=(+/-)0.84[/tex]
Remember that
If the sine of angle theta is positive, then the angle theta lie on the I Quadrant or II Quadrant
therefore
If the angle theta is on the I Quadrant the cosine will be positive
If the angle theta is on the II Quadrant the cosine will be negative