Respuesta :

Answer:

[tex]cos(\theta)=(+/-)0.84[/tex]

Step-by-step explanation:

we know that

[tex]sin^2(\theta)+cos^2(\theta)=1[/tex] ----> by trigonometric identity

we have

[tex]sin(\theta)=0.55[/tex]

substitute

[tex](0.55)^2+cos^2(\theta)=1[/tex]

[tex]cos^2(\theta)=1-(0.55)^2[/tex]

[tex]cos^2(\theta)=0.6975[/tex]

[tex]cos(\theta)=(+/-)\sqrt{0.6975}[/tex]

[tex]cos(\theta)=(+/-)0.84[/tex]

Remember that

If the sine of angle theta is positive, then the angle theta lie on the I Quadrant or II Quadrant

therefore

If the angle theta is on the I Quadrant the cosine  will be positive

If the angle theta is on the II Quadrant the cosine  will be negative