The functions below are transformations of the parent function f(x) = 3x . Match each function to it's correct transformation. Question 24 options:

h(x) = 4(3)x

g(x) = (3)5x

p(x) = 12(3)x

w(x) = 30.2x

1. Vertical Stretch

2. Vertical Compression

3. Horizontal Stretch

4. Horizontal Compression

Respuesta :

Answer:

[tex]h(x)=4(3)^x[/tex]; Vertical stretch

[tex]g(x)=(3)^{5x}[/tex]; Horizontal compression

[tex]p(x)=\frac{1}{2}(3)^x[/tex]; Vertical compression

[tex]w(x)=(3)^{0.2x}[/tex]; Horizontal stretch

Step-by-step explanation:

The given parent function is

[tex]f(x)=3^x[/tex]

The transformation between two functions is defined as

[tex]q(x)=kf(x)[/tex]

If 0<k<1, then it is vertical compression and k>1 then it is vertical stretch.

[tex]q(x)=f(jx)[/tex]

If 0<j<1, then it is horizontal stretch and j>1 then it is horizontal compression.

[tex]h(x)=4(3)^x[/tex]

[tex]h(x)=4f(x)[/tex]

Here, k=4, therefore it is vertical stretch.

[tex]g(x)=(3)^{5x}[/tex]

[tex]g(x)=f(5x)[/tex]

Here, j=5, therefore it is horizontal compression.

[tex]p(x)=\frac{1}{2}(3)^x[/tex]

[tex]p(x)=\frac{1}{2}f(x)[/tex]

Here, k=1/2, therefore it is vertical compression.

[tex]w(x)=(3)^{0.2x}[/tex]

[tex]w(x)=f(0.2x)[/tex]

Here, j=0.2, therefore it is horizontal stretch.