Respuesta :

Good evening ,

Answer:

CE=12

Step-by-step explanation:

Using Thales theorem:

AE/AC = AD/AB

⇌ 3/AC = 2/10

⇌ AC = (3×10)/2 = 15

since CE=AC-AE then CE=15-3=12.

:)

Answer : The value of CE is, 15 m

Step-by-step explanation :

According to the theorem, if a line is parallel to one side of a triangle and intersect to the other sides of triangle then it divides those sides proportionally.

That means,

[tex]\frac{AD}{AB}=\frac{AE}{AC}[/tex]

or,

[tex]\frac{AD}{AD+BD}=\frac{AE}{AE+CE}[/tex]

Given:

Side AD = 2 m

Side BD = 10 m

Side AE = 3 m

Now put all the given values in the above formula, we get the value of CE.

[tex]\frac{AD}{AD+BD}=\frac{AE}{AE+CE}[/tex]

[tex]\frac{2m}{2m+10m}=\frac{3m}{3m+CE}[/tex]

[tex]\frac{2m}{12m}=\frac{3m}{3m+CE}[/tex]

CE = 15 m

Therefore, the value of CE is, 15 m