In the diagram, BC⎯⎯⎯⎯⎯∥DE⎯⎯⎯⎯⎯ .
What is CE ?
Enter your answer in the box.

Good evening ,
Answer:
CE=12
Step-by-step explanation:
Using Thales theorem:
AE/AC = AD/AB
⇌ 3/AC = 2/10
⇌ AC = (3×10)/2 = 15
since CE=AC-AE then CE=15-3=12.
:)
Answer : The value of CE is, 15 m
Step-by-step explanation :
According to the theorem, if a line is parallel to one side of a triangle and intersect to the other sides of triangle then it divides those sides proportionally.
That means,
[tex]\frac{AD}{AB}=\frac{AE}{AC}[/tex]
or,
[tex]\frac{AD}{AD+BD}=\frac{AE}{AE+CE}[/tex]
Given:
Side AD = 2 m
Side BD = 10 m
Side AE = 3 m
Now put all the given values in the above formula, we get the value of CE.
[tex]\frac{AD}{AD+BD}=\frac{AE}{AE+CE}[/tex]
[tex]\frac{2m}{2m+10m}=\frac{3m}{3m+CE}[/tex]
[tex]\frac{2m}{12m}=\frac{3m}{3m+CE}[/tex]
CE = 15 m
Therefore, the value of CE is, 15 m