Respuesta :

Answer: [tex]6\sqrt{2}-30\sqrt{3}[/tex]

Step-by-step explanation:

Remember that:

[tex](\sqrt{a})(\sqrt{b})=\sqrt{ab}[/tex]

[tex]\sqrt[n]{a^n}=a[/tex]

Given the following expression:

[tex](2-5\sqrt{6})(3\sqrt{2})[/tex]

The steps to simplify this expression, are:

1. Apply the Distributive property:

[tex]=(2)(3\sqrt{2})-(5\sqrt{6})(3\sqrt{2})=6\sqrt{2}-15\sqrt{12}[/tex]

2.Since:

[tex]12=2*2*3=2^2*3[/tex]

You can rewrite the radicand 12 in this form:

[tex]=6\sqrt{2}-15\sqrt{2^2*3}[/tex]

3. Simplifying, you get:

[tex]=6\sqrt{2}-(15)(2)\sqrt{3}=6\sqrt{2}-30\sqrt{3}[/tex]

4. Notice that the indices of the Radicals are the same, but the radicands don't, then, you can subtract the Radicals.

6Г2-30Г3 D

Step-by-step explanation: