Ignoring reflection at the air-water boundary, if the amplitude of a 10 GHz incident wave in air is 20 V/m at the water surface, at what depth will it be down to 1 µV/m? Water is characterized by er = 81, µr = 1, and σ = 0.1 S/m. Can water described above, at 10 GHz, be described as a low-loss dielectric, good conductor, or "in-between"?

Respuesta :

Answer:

0.80267 m

Explanation:

E(z) = Electric field = 1 µV/m

[tex]E_0[/tex] = 20 V/m

z = Depth

[tex]\sigma[/tex] = Conductivity = 0.1 S/m

[tex]\epsilon_r[/tex] = 81

[tex]\mu[/tex] = Impedance of free space = [tex]120\pi\ \Omega[/tex]

Frequency is given by

[tex]E(z)=E_0e^{-\alpha z}[/tex]

Parameter is given by

[tex]\alpha=\dfrac{\sigma}{2}\sqrt{\dfrac{\mu}{\epsilon_r}}\\\Rightarrow \alpha=\dfrac{1}{2}\sqrt{\dfrac{(120\pi)^2}{81}}\\\Rightarrow \alpha=20.94395\ N_p/m[/tex]

From the first equation

[tex]1\times 10^{-6}=20e^{-20.94395z}\\\Rightarrow ln\dfrac{1\times 10^{-6}}{20}=-20.94395z\\\Rightarrow z=\dfrac{ln\dfrac{1\times 10^{-6}}{20}}{-20.94395}\\\Rightarrow z=0.80267\ m[/tex]

The depth is 0.80267 m