A 54.3 mg sample of sodium perchlorate contains radioactive chlorine-36 (whose atomic mass is 36.0 amu).
If 29.6% of the chlorine atoms in the sample are chlorine-36 and the remainder is naturally occurring nonradioactive chlorine atoms, how many disintegrations per second are produced by this sample? The half-life of chlorine-36 is 3.0×105 yr.

Respuesta :

Answer:

[tex]5.79\times 10^{6}\ Bq[/tex]

Explanation:

Calculation of the moles of sodium perchlorate as:-

Mass = 54.3 mg

Also, 1 mg = 0.001 g

So, Mass = [tex]0.0543\ g[/tex]

Molar mass of sodium perchlorate = 122.44 g/mol

The formula for the calculation of moles is shown below:

[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]

Thus,

[tex]Moles= \frac{0.0543\ g}{122.44\ g/mol}[/tex]

[tex]Moles= 0.0004435\ mol[/tex]

Also, given that it contains 29.6 % of the radioactive Chlorine

So, Moles of radioactive chlorine in the sample = [tex]\frac{29.6}{100}\times 0.0004435\ mol=0.000131276\ mol[/tex]

1 mole of Chlorine contains  [tex]6.023\times 10^{23}[/tex] atoms of chlorine

So,

0.000131276 mole of Chlorine contains  [tex]0.000131276\times 6.023\times 10^{23}[/tex] atoms of chlorine

Atoms of radioactive chlorine in the sample = [tex]7.9\times 10^{19}[/tex]

Given that:

Half life = [tex]3.0\times 10^5[/tex] year

1 year = [tex]3.154\times 10^7[/tex] s

Half life = [tex]3.0\times 10^5\times 3.154\times 10^7[/tex] s = 9462000000000 s

The expression for half-life is:-

[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]

[tex]k=\frac{ln\ 2}{9462000000000}\ s^{-1}[/tex]

The rate constant, k =[tex]7.33\times 10^{-14}[/tex] s⁻¹

Disintegration is:-

Disintegrations per second = Rate constant*Number of atoms = [tex]7.33\times 10^{-14}\times 7.9\times 10^{19}\ Bq[/tex] = [tex]5.79\times 10^{6}\ Bq[/tex]