Answer:
The value of Cos (-Ф) [tex]\dfrac{\textrm 4}{\textrm 5}[/tex] .
Step-by-step explanation:
Given Trigonometric function as :
sin( - Ф ) = [tex]\frac{- 3}{5}[/tex]
- sin Ф = [tex]\frac{- 3}{5}[/tex]
So, sin Ф = [tex]\frac{ 3}{5}[/tex]
Now, as sin Ф = [tex]\dfrac{\textrm perpendicular}{\textrm hypotenuse}[/tex]
So , [tex]\dfrac{\textrm perpendicular}{\textrm hypotenuse}[/tex] = [tex]\frac{ 3}{5}[/tex]
So, perpendicular = 3
And hypotenuse = 5
Now, From Pythagoras Theorem
Base ² = Hypotenuse² - Perpendicular²
Or, Base ² = 5² - 3²
Or, Base ² = 25 - 9
Or, Base ² = 16
∴ Base = [tex]\sqrt{16}[/tex]
I.e Base = 4
Now, Cos Ф = [tex]\dfrac{\textrm base}{\textrm hypotenuse}[/tex]
So, Cos Ф = [tex]\dfrac{\textrm 4}{\textrm 5}[/tex]
Now , Since
Cos ( - Ф ) = Cos Ф
So, Cos ( - Ф ) = Cos Ф = [tex]\dfrac{\textrm 4}{\textrm 5}[/tex]
Hence The value of Cos (-Ф) [tex]\dfrac{\textrm 4}{\textrm 5}[/tex] . Answer