Answer:
a) [tex]K(t)=6\frac{tie}{min}(t)[/tex]
b)[tex]J(t)=11\frac{tie}{min}(t)[/tex]
c)[tex]T_{f}(t)=K(t+10)+J(t)[/tex] where [tex]T_{f}(t)[/tex]= number ties finished per unit time
d) t≅8.24min
e) K=109tie
J=91tie
f) K≅16.6min
J≅9.09min
Step-by-step explanation:
Data
[tex]Kara_{(K)}=6\frac{tie}{min}\\Julie(J)=11\frac{tie}{min}[/tex]
Kara begins ten minutes before julie, so when julie joins kara she has 60 ties
t=10 [tex]k=6\frac{tie}{min}*10min=60tie[/tex]
a) [tex]K(t)=6\frac{tie}{min}(t)[/tex]
b)[tex]J(t)=11\frac{tie}{min}(t)[/tex]
c)[tex]T_{f}(t)=K(t+10)+J(t)[/tex] where [tex]T_{f}(t)[/tex]= number ties finished per unit time
d) if kara already has 60 ties and makes 6 per minute and Julie makes 11 per minute then per minute they makes 17 ties, so one minute per 17 ties for 200 ties ¿how long?. [tex]t=\frac{(200-60)tie*min}{17tie}[/tex]≅8.24min
e) K=60tie+6tie/min*8.24min=109tie
J=11tie/min*8.24min=91tie
f) K=100tie*min/6tie≅16.6min
J=100tie*min/11tie≅9.09min
Note: the amount of ties were rounded to the nearest decimal