What is the length of TW?

Answer:
[tex]TW=8\ units[/tex]
Step-by-step explanation:
From the figure we can see that Δ YTW is a right triangle with sides:
WY = Hypotenuse (longest side)
TW = Shorter Leg
TY = Larger leg
Applying Pythagorean theorem.
[tex](Hypotenuse)^2=(Shorter\ leg)^2+(Larger\ Leg)^2[/tex]
Thus for Δ YTW
[tex]WY^2=TW^2+TY^2[/tex]
Plugging in values [tex]TY=15[/tex] and [tex]YW=17[/tex]
[tex]17^2=TW^2+15^2[/tex]
[tex]289=TW^2+225[/tex]
Subtracting 225 both sides.
[tex]289-225=TW^2+225-225[/tex]
[tex]64=TW^2[/tex]
Taking square root both sides.
[tex]\sqrt{64}=\sqrt{TW^2}[/tex]
[tex]8=TW[/tex]
∴ [tex]TW=8\ units[/tex] (Answer)