Respuesta :

Answer:

(a) [tex]\sqrt{x^3}  = x\sqrt{x}[/tex]

(b)[tex]\sqrt{a^5}  = a^2\sqrt{a}[/tex]

Step-by-step explanation:

Here, the given expression is :

[tex](a)  \sqrt{x^3}[/tex]

Now, cube of any number [tex]a = (a)^3  = a \times  a  \times a[/tex]

So,  [tex] (x)^3  = x \times  x  \times x   = (x) ^2  \times x[/tex]

[tex]\implies   \sqrt{x^3}  =   \sqrt{x^2 \times x}  = \sqrt{x^2}\sqrt{x}   = x\sqrt{x}[/tex]

(because [tex]\sqrt{a^2}    =  a[/tex])

Hence, [tex]\sqrt{x^3}  = x\sqrt{x}[/tex]

Here, the given expression is :

[tex](b)  \sqrt{a^5}[/tex]

Now, five power of any number [tex]m = (m)^5  = m \times m  \times m \times m  \times m   [/tex]

So,  [tex] (x)^5  = x \times  x  \times x  \times x \times x   = (x) ^4  \times x[/tex]

[tex]\implies   \sqrt{a^5}  =   \sqrt{a^4 \times x}  = \sqrt{a^4}\sqrt{a}   = a^2\sqrt{x}[/tex]

(because [tex]\sqrt{a^4}    =  a^2[/tex])

Hence, [tex]\sqrt{a^5}  = a^2\sqrt{a}[/tex]