1. Use three units multipliers to convert 1520 meters to feet.
2. Find the number that is 27 greater than twice the opposite of itself.
3. Write 420 as a product of prime.
4. 2\frac{2}{3} of what number?
5. If f(x)=-5-7x, find f(-2).
6. siplify: (a) -3^{2} (b) \frac{1}{-3^{-2} }
7. Factor the greatest common factor of 3a^{2}b^{3}c^{2} - 6a^{3}b^{2}c^{4}

Respuesta :

Answer:

1. 4560 ft.

2. 9

3. 2 × 2 × 3 × 5 × 7

4. 3

5. f(-2) = 9

6. - 9, - 9

7. [tex]3a^{2}b^{2}c^{2}[b - 2ac^{2}][/tex]

Step-by-step explanation:

1. We have to convert 1520 meters to feet using 3 as a unit multiplier.

So, 1520 m = (1520 × 3) ft = 4560 ft. (Answer)

2. Assume the number is x, then the opposite number is - x.

So, given that -2x + 27 = x

⇒ 3x = 27  

x = 9 (Answer)

3. 420 = 2 × 2 × 3 × 5 × 7 (Answer) {Using factorization method.}

4. 2 is [tex]\frac{2}{3}[/tex] of 3. Since, [tex]\frac{2}{3} \times 3 = 2[/tex]. (Answer)

5. if f(x) = - 5 - 7x, then f(-2) = - 5 - 7(- 2) = - 5 + 14 = 9 (Answer)

6.a) [tex]- 3^{2} = - 9[/tex] and

b) [tex]\frac{1}{-3^{-2} } = - \frac{1}{3^{- 2} }  = - 3^{2} = - 9[/tex] (Answer)

7. We have to factor the greatest common factor of

[tex]3a^{2}b^{3}c^{2} - 6a^{3}b^{2}c^{4} = 3a^{2}b^{2}c^{2}[b - 2ac^{2}][/tex]. (Answer)