Function f is an exponential function. It predicts the value of a famous painting, in thousands of dollars, as a function of the number of years since it was last purchased. What equation models this function? Graph on a coordinate plane with axes labeled x and f of x. An exponential curve passes through 0 comma 8, 1 comma 10, and 2 comma 12.5. Enter your answer in the box. f(x)=

Respuesta :

Answer:

[tex]y=8 \cdot (\frac{5}{4})^x[/tex]

[tex]f(x)=8 \cdot (\frac{5}{4})^x[/tex]

or

[tex]f(x)=8 \cdot (1.25)^x[/tex]

Step-by-step explanation:

We are going to see if the exponential curve is of the form:

[tex]y=a \cdot b^x[/tex], ([tex]b\neq 0[/tex]).

If you are given the [tex]y-[/tex]intercept, then [tex]a[/tex] is easy to find.

It is just the [tex]y-[/tex]coordinate of the [tex]y-[/tex]intercept is your value for [tex]a[/tex].

(Why? The [tex]y-[/tex]intercept happens when [tex]x=0[/tex]. Replacing [tex]x[/tex] with 0 gives [tex]y=a \cdot b^0=a \cdot 1=a[/tex]. This says when [tex]x=0 \text{ that} y=a[/tex].)

So [tex]a=8[/tex].

So our function so far looks like this:

[tex]y=8 \cdot b^x[/tex]

Now to find [tex]b[/tex] we need another point. We have two more points. So we will find [tex]b[/tex] using one of them and verify for our resulting equation works for the other.

Let's do this.

We are given [tex](1,10)[/tex] is a point on our curve.

So when [tex]x=1[/tex], [tex]y=10[/tex].

[tex]10=8 \cdot b^1[/tex]

[tex]10=8 \cdot b[/tex]

Divide both sides by 8:

[tex]\frac{10}{8}=b[/tex]

Reduce the fraction:

[tex]\frac{5}{4}=b[/tex]

So the equation if it works out for the other point given is:

[tex]y=8 \cdot (\frac{5}{4})^x[/tex]

Let's try it.  So the last point given that we need to satisfy is [tex](2,12.5)[/tex].

This says when [tex]x=2[/tex], [tex]y=12.5[/tex].

Let's replace [tex]x[/tex] with 2 and see what we get for [tex]y[/tex]:

[tex]y=8 \cdot (\frac{5}{4})^2[/tex]

[tex]y=8 \cdot \frac{25}{16}[/tex]

[tex]y=\frac{8}{16} \cdot 25[/tex]

[tex]y=\frac{1}{2} \cdot 25}[/tex]

[tex]y=\frac{25}{2}[/tex]

[tex]y=12.5[/tex]

So we are good. We have found an equation satisfying all 3 points given.

The equation is [tex]y=8 \cdot (\frac{5}{4})^x[/tex].

Answer:

the answr is 8(1.25)^x

Step-by-step explanation:

i took the test and its right