Respuesta :
−[cos2(x)√−(sin(x)+1)(sin(x)−1)] / [(sin(x)+1)(sin(x)−1)] I belive is the answer
formula
cos(pi - x) = -cos(x)
cos^2(x) + sin^2(x) = 1
i think you mean this
cos^2(pi-x) / sqrt[ 1-sin^2(x) ]
= cos^2(x) / sqrt[ cos^2(x) ]
= cos^2(x) / | cos(x) |
= | cos(x) |
if so, none is correct
cos(pi - x) = -cos(x)
cos^2(x) + sin^2(x) = 1
i think you mean this
cos^2(pi-x) / sqrt[ 1-sin^2(x) ]
= cos^2(x) / sqrt[ cos^2(x) ]
= cos^2(x) / | cos(x) |
= | cos(x) |
if so, none is correct