Respuesta :

Answer:

[tex]\displaystyle \frac{3-\sqrt{27}}{27}[/tex]

Step-by-step explanation:

Simplifying Roots

When roots are found in an algebraic expression, it's convenient to recall these properties:

[tex]\displaystyle \sqrt[m]{x^n}=\ x^{\frac{n}{m}}[/tex]

[tex]\displaystyle x^m.\ x^n=\ x^{m+n}[/tex]

[tex]\displaystyle (x^m)^n=\ x^{m.n}[/tex]

The expression is given as

[tex]\displaystyle \frac{\sqrt[4]{9}-\sqrt{9}}{\sqrt[4]{9^5}}[/tex]

We know that [tex]9=3^2[/tex], so

[tex]\displaystyle \frac{\sqrt[4]{3^2}-\sqrt{3^2}}{\sqrt[4]{3^{10}}}[/tex]

Applying the root property

[tex]\displaystyle \frac{3^\frac{2}{4}-3^{\frac{2}{2}}}{3^\frac{10}{4}}[/tex]

Simplifying the fractions

[tex]\displaystyle \frac{3^\frac{1}{2}-3^1}{3^\frac{5}{2}}[/tex]

Multiplying both parts by [tex]3^{1/2}[/tex]

[tex]\displaystyle \frac{3^\frac{1}{2}(3^\frac{1}{2}-3^1)}{3^\frac{1}{2}\ 3^\frac{5}{2}}[/tex]

Operating the exponents

[tex]\displaystyle \frac{3^{\frac{1}{2}+\frac{1}{2}}-3^{1+\frac{1}{2}}}{3^{\frac{1}{2}+\frac{5}{2}}}[/tex]

Or equivalently

[tex]\displaystyle \frac{3^1-3^\frac{3}{2}}{3^\frac{6}{2}}[/tex]

Simplifying and converting back to root notation

[tex]\displaystyle \frac{3-\sqrt{3^3}}{3^3}[/tex]

Operating

[tex]\boxed{\displaystyle \frac{3-\sqrt{27}}{27}}[/tex]