Answer:[tex]1.644\times 10^{5} Pa[/tex]
Explanation:
Given
Initial Gauge Pressure [tex]P_i=2.50\times 10^5 N/m^2[/tex]
[tex]P_1_{abs}=(2.50+1.01325)\times 10^5[/tex]
Temperature [tex]T_i=35^{\circ}C\approx 308 K[/tex]
Final Temperature [tex]T_f=-40^{\circ}C\approx 233 K[/tex]
Also change in volume =0 i.e. [tex]\Delta V=0[/tex]
using [tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}[/tex]
[tex]\frac{(2.50+1.01325)\times 10^5}{308}=\frac{P_f}{233}[/tex]
[tex]P_f=2.65\times 10^{5} Pa[/tex]
[tex]P_f_{gauge}=2.65-1.01325=1.644\times 10^{5} Pa[/tex]